Project 7: Wound Cultures and Identification

Readings:
https://labtestsonline.org/understanding/analytes/wound-culture/tab/test

Identification of Gram-Positive & Gram-Negative Bacteria
• Guide to laboratory stock cultures developed during Lab Project 4

Purpose:
The purpose of this experiment is for students to understand microbe identification in the context of a clinical situation. This lab uses the clinical simulation of the wound culture to more precisely define the process of determining the genus and species identification of a potential pathogen from a clinical specimen.

Outcomes:
After you complete this lab, you will be able to:
- Isolate and identify bacteria in an unknown sample.
 - Perform an isolation streak plate.
 - Make decisions about the type of tests that must be performed the test to confirm the genus and species of an unknown bacterium using the methods of colony morphology (using TSY), differential staining (Gram, Acid-fast, Endospore), differential and selective media (blood agar, mannitol salt, MacConkeys), as well as more specific laboratory tests.
 - Perform the tests, collect and interpret the data
- Perform and interpret antibiotic sensitivity testing.
 - Identify the time necessary for performing the test.
 - Identify limitations of sensitivity testing.
 - Relate microbial structure to mode of anti-microbial action.
Wound Culture

Terms to Know:
Be able to define these terms and apply them in the laboratory.

<table>
<thead>
<tr>
<th>Hemolysis</th>
<th>Acid fast bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>antibiotic sensitivity</td>
<td>Enterobacteriaceae</td>
</tr>
<tr>
<td>Bacitracin sensitivity</td>
<td>Enterococcus</td>
</tr>
<tr>
<td>culturette</td>
<td>MacConkey’s medium</td>
</tr>
<tr>
<td>controls</td>
<td>medical technologist</td>
</tr>
<tr>
<td>colony forming unit</td>
<td>viable cell counts</td>
</tr>
<tr>
<td>differential media</td>
<td></td>
</tr>
</tbody>
</table>

INTRODUCTION:
Recall from the Lab Project 4 Introduction, that our bodies are composed of 100 trillion \(10^{14}\) cells. We are inhabited by a quadrillion \(10^{15}\) bacterial cells, known as normal flora. Normal flora is found on any exposed surface of the body (i.e., skin and mucus membranes), but healthy internal organs are sterile – no bacteria live there.

You are colonized at birth. Most of the bacteria that are there are long-term inhabitants. Others, called transient flora, are just passing through.

Our normal reaction to the notion that we are covered in bacteria is “YUCK!!” However, with all that bacteria do for us, this is a misguided reaction. Normal flora takes up space (preventing pathogens from moving in and setting up housekeeping), consumes the scant nutrients available (again, competing with potential pathogens) and puts out waste products that keep other less desirable microbes from setting up shop. In this lab you will investigate the normal-flora microorganisms that inhabit the different surfaces of your body.

Normal flora must be considered when examining cultures for a suspected pathogen. Knowing the types and locations of various normal flora may assist clinicians in deciding whether a reported microbial suspect is friend or foe. When performing wound cultures, the major groups of bacteria that may cause infection could easily be overrun by normal flora. On the Petrie plate we need some mechanism to distinguish normal oral flora from potential pathogen.

Wounds can be contaminated with a wide range of bacteria, especially those found distributed in the environment.
Wound Culture

Culturettes
When a patient has a wound for which they have sought medical attention, it is common to perform a wound culture. The culturette is a specialized cotton swab with transport medium that is used to swab the wound. It should be transported to the laboratory as quickly as possible to avoid any loss of potential pathogen and to prevent normal flora from overgrowing. The culturette is used to swab the first quadrant of an isolation streak plate on nutrient agar. After this first quadrant streak, the culturette may be discarded in biohazard. Use the inoculation loop and the bactoincinerator to complete the four quadrant isolation streak plate and ready the culture for incubation.

Antibiotic Sensitivity
We will use the Kirby Bauer Method of antibiotic sensitivity. In this technique, a carpet of growth of bacteria is promoted on TSY media. Antibiotic discs are applied to the inoculated media before incubation. Each disc is impregnated with a different antibiotic. The antibiotics diffuse from the disc through the TSY media. As they get farther from the disc their concentration decreases. If the bacteria are sensitive to the antibiotic it will not be able to grow around the disc at a particular concentration. The resulting circular pattern where no growth of bacteria occurs is called the zone of inhibition. The zone is based on many factors and may vary from antibiotic to antibiotic. Thus, a table of zone sizes, acquired from the antibiotic disc suppliers is provided so that you can interpret your results:

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Sensitive</th>
<th>Resistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>penicillin</td>
<td>> 29 mm</td>
<td>< 28 mm</td>
</tr>
<tr>
<td>erythromycin</td>
<td>> 18</td>
<td>< 13</td>
</tr>
<tr>
<td>ciprofloxacin</td>
<td>> 18</td>
<td>< 12</td>
</tr>
<tr>
<td>tetracycline</td>
<td>> 19</td>
<td>< 14</td>
</tr>
<tr>
<td>methicillin</td>
<td>> 17</td>
<td>< 12</td>
</tr>
<tr>
<td>sulfadiazine</td>
<td>> 16</td>
<td>< 10</td>
</tr>
</tbody>
</table>

Notice that sometimes the numbers provide leave a gap. For instance, there is a gap between 13 and 18 mm when interpreting the results of the erythromycin antibiotic. This gap can be interpreted as neither sensitive or resistant, but rather as an 'intermediate' sensitivity.
Wound Culture

Wound Culture & Identification – SESSION 1

1. Obtain a culturette of an ‘unknown’ from your instructor. Record the unknown identification number / patient name.

2. Use the culturette to inoculate the first quadrant in an isolation streak plate on TSY agar. (See Figure 7.1)

3. Discard the culturette in the biohazard container.

4. Then, sterilize the inoculating loop in the bactoincinerator, allow the loop to cool, and inoculate quadrant 2 of the isolation streak plate.

5. Continue the isolation streak of quadrants 3 and 4, flaming the loop before streaking each section.

6. Ready the plate for storage in the green ‘save’ bin and it will be incubated at 37°C for 24 hours.

Figure 7.1: Quadrant 1 in isolation streak plate

Figure 7.2: Quadrants 1 and 2 of isolation streak plate
Wound Culture

Wound Culture & Identification – SESSION 2

1. Obtain the wound culture plate set up in Session 2.
2. Record observations of the colony morphology you observe.
3. Record information on the hemolysis patterns you observe.
4. Work up of a potential pathogen from wound culture:
 a. Recall that the first step in identification of an unknown is the Gram stain. Complete this test, record your data, and interpret the results. You will need to include these data in your Patient Work-Up form, including pictures. Record your observations (i.e. purple, round, etc.) and interpretations (Gram positive, cocci) in the separate columns provided.
 b. Using your Gram stain as a guide, determine the identification tests you need to set up for traditional identification of a bacterium. The dichotomous key and previous laboratory experience provides the basis for this decision making. Acquire the necessary media/reagents, set up the tests, place the tests in the appropriately labeled green incubation bin for incubation and storage until next week.

Some decision making guides are as follows:

- Use positive test results as your definitive test (e.g. “I see endospores therefore, given the 8 laboratory stock bacteria, I know I have identified Bacillus subtilis”) rather than a negative test (e.g. “I do not see endospores on the endospore stain and the only other possible Gram positive bacilli is Mycobacterium smegmatis”).
- Set up identifying tests AND the antibiotic sensitivity tests (procedure below) during Session 3 of the lab. Read all of your results during Session 3.
- Record the procedure you follow in numbered steps. Record your OBSERVATIONS and your INTERPRETATIONS in a table format (consider using the table from Lab Project 4).
- Identify your unknown (genus and species identification).

NOTE: If you set up a test that is not needed you will be charged (i.e. penalty points will be deducted from your lab report) for the excess use of materials; if the lab work is not completed in a timely manner because you did not set up the appropriate tests in the correct order you will be charged with an ethics violation (i.e. penalty points assessed to lab report) because you caused a patient to suffer due to your improper decision making. You have a classroom full of colleagues. Use this fertile ground for discussion of what you plan to do and why you think it should be done this way.
Wound Culture

Set up antibiotic sensitivity test using the following modified Kirby Bauer technique:

1. Obtain 3 TSY plates. Two are for testing antibiotic sensitivity. One will be used as a heat sink.

2. Identify several well isolated colonies from a pure culture isolation streak plate of your unknown.
 a. Pick these colonies using a sterile cotton swab.
 b. Transfer the colonies to a tube of 10 mL of sterile saline. Squeegee the cotton swab on the side of the test tube to dislodge the bacterial colonies and make a cloudy suspension.
 c. Discard the cotton swab in the biohazard bag.

3. Use a Pasteur pipette to mix your suspension.

4. Place 5 drops of your bacterial suspension on each of your TSY plates.

5. Using a spreader, spread the bacteria over the surface of the TSY plates.
 a. Pour enough ethanol into a beaker so that the end of the spreader is immersed in the alcohol when dipped.
 b. Dip your spreader in alcohol, and then flame. Be sure there is no paper on the lab bench near the Bunsen burner, so if the flaming alcohol drips, you do not light it on fire.
 c. Wait until no flame is visible, and then touch the flamed spreader to the surface of your heat sink TSY plate to cool it. You are using the heat sink to disperse the heat from flaming from the spreader more rapidly than if you waited for it to cool in air.
 d. Use the spreader to spread the bacteria on the two plates you will use for antibiotic testing.

6. Located on the side bench you will find Petri plates containing antibiotic disc cylinders. You will need penicillin, methicillin, tetracycline, ciprofloxacin, sulfadiazine and erythromycin. Write down the letters on the disks (or on your plate’s under-surface, under the discs and agar) and the names of the corresponding antibiotics so you will be able to interpret your results next week. You will need at least one chrome disc-dispenser. Dispense three disks onto each plate, being careful to keep them as far apart as possible on the plate, so your zones of inhibition don’t run together.

7. Sterilize a loop, and gently touch it to each disk to be sure the disc adheres to the surface of the medium. Don’t push the disc into the media. Gently tap the disc and it will adhere.

8. Place your test plates in the green “save” bin. Discard your heat sink.
Wound Culture

Wound Culture & Identification – SESSION 3

1. Retrieve the antibiotic sensitivity plates from the bin.

2. Identify antibiotics that lack a zone of inhibition, and record the result as “No zone of inhibition”.

3. Identify antibiotic discs encircled by a zone of inhibition (Figures 7-3 & 7-4).
 a. Place the edge of the metric ruler on the back of the bottom of the TSY plate so that the zero hash mark is lined up with one edge of the zone.
 b. Measure the diameter of the zone in millimeters through the middle of the disc, and record the result in the second table that follows.
 c. Use the table immediately below to interpret your results. S = sensitive, R = resistant, I = intermediate sensitivity

Figure 7-3: Antibiotic Discs on an Inoculated TSY Plate

Figure 7-4: Measuring the Zone of Inhibition